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Abstract-This paper considers the steady-state free convection flow arising from a line thermal source 
positioned at the leading edge of a vertical adiabatic surface embedded in polymeric fluids. The wall plume 
depends on two parameters: the index of the power-law fluid (n) and the generalized Prandtl number (Pr). 
Precise conditions of finding similarity solutions for this problem are derived. A family of numerical 

solutions for n ranging from 0.2 to 2.0 and for Pr = IO and 100 is reported. 

1. INTRODUCTION 

SIMILARITY solutions for the free convection flow of a 
Newtonian fluid arising from a steady line thermal 
source embedded at the leading edge of a vertical 
adiabatic surface date back to an early paper by Zimin 
and Lyakhov [I] in 1970. 

authors’ knowledge no investigation of the problem 
considered in the present paper has been reported 
previously in the literature. 

2. ANALYSIS 

Later, Jaluria and Gebhart [2] presented accurate 
numerical solutions of this problem for a Prandtl 
number range of 0.01-100. Afzal [3] and recently 
Ingham and Pop [4] have derived higher-order solu- 
tions for convective wall plumes for moderately large 
values of the Grashof number of the method of 
matched asymptotic expansions. A search of the litera- 
ture reveals that papers [5-81 are also all devoted to the 
problem of convective wall plumes in a Newtonian 
fluid. 

Consider the problem of steady, laminar, free con- 
vection from a line source of heat positioned at the 
leading edge of a vertical adiabatic surface immersed 
in an unbounded power-law fluid with the following 
transport properties [ 15, 161 

The aim of this paper is to investigate the free con- 
vection flow of a Dower-law fluid arising from a line 
thermal source positioned at the leading edge of a 
vertical adiabatic surface. A systematic analysis for 
deriving a possible similarity formulation for this flow 
problem is presented. In Section 2, the similarity trans- 
formation of the boundary layer equations is intro- 
duced and numerical solutions are presented for 
various values of the power-law index, n, and the 
generalized Prandtl number, Pr. The concluding sec- 
tion draws attention to the principal results of this 
paper. 

Tij  = -P6ij+K10.5J,I’“- ‘)‘*eij (1) 

q = -k]0.5J2]“” grad T (74 

where ~~~ and eij are the tensors of stress and strain- 
rate, 6, is unit tensor, J2 is the second invariant of the 
strain-rate tensor, n and s are superscripts identifying 
non-Newtonian behaviour in the flow and heat trans- 
fer. The strict Boussinesq approximation is assumed, 
i.e. the variation of fluid density with temperature is 
accounted for only in the buoyancy term of the ver- 
tical momentum equation ; all other fluid properties 
are assumed to be constant; and viscous dissipation 
is neglected. The plume is assumed to be laminar and 
the boundary layer approximation is assumed to hold. 
We chose (x*,y*) as coordinates with the x*-axis 
measured along the wall in an upward direction and 
the y*-axis is normal to it. The temperature T takes 
the value T, in the ambient fluid. Under these con- 
ditions the basic equations in non-dimensional form 
(for details see Table 1) can be written as 

It is worth mentioning at this point that the trans- 
port phenomenon in power-law fluid flow has been 
the subject of many recent investigations due to the 
frequent use of this type of fluid in modern industry. 
Several review articles and books may be consulted 
for detailed information of this subject [9-141. To the 
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NOMENCLATURE 

c, skin friction coefficient V reference velocity 

CP specific heat at constant pressure x*, y* Cartesian coordinates. 

fJ, strain-rate tensor 
f reduced stream function Greek symbols 

9 acceleration due to gravity 
Cl generalized Grashof number ; 

thermal diffusivity 
thermal expansion coefficient 

I1 reduced temperature function ijfj unit tensor 
J? second invariant of the strain-rate tensor 0 dimensionless temperature 
k thermal conductivity II similarity variable 
K consistency index P density 
L reference length T shear stress 
I1 flow behaviour index IL stream function. 
P pressure 
Pf generalized Prandtl number Subscripts 
q, 1 dimensional and non-dimensional heat W wall condition 

input by the thermal source m ambient condition. 
s heat transfer behaviour index 
T temperature Superscripts 
T reference temperature differentiation with respect to 9 
u*, 11% velocity components * dimensional variables. 

pr = Ll+““l-” (-r-“u+w,I+4”,,tl 

(5) 
U = (pL” Gr- tI(U+ ,,,(‘t”+ “,E() ,,,,l- 2) 

is the characteristic velocity for this free convection 
The associated boundary conditions are 

y=O:u=n=O (64 

do 
0 = (T,-T,)Grh/T, or - = 0 

aY 
(6b) 

y-tm:u=o, o=o (6~) 

together with a condition which expresses the fact that 
there is uniform heat flux from the line source 

I 

cc 
u0dy = I (7) 

0 

where 

I = q(pC,,LT,)- ‘(pL” Gr”- l/K)““I-“. (8) 

The generalized Grashof number is 

G,. = g~T,L’~+“,/(~-~)/(p/K)~/(“-~) 

and the generalized Prandtl number is 

Table 1. Dimensionless variables 

T- T, 
~ Grh 

T, 

situation. 
The solution of the coupled non-linear partial 

differential equations (3)-(S) is facilitated by a num- 
ber of transformations. The first step is to introduce 
a stream function II, such that 

(9) 

Then, the pseudo-similarity variables are defined as 

+ = X(2Jr+ 1w4n+ “f (x,rl), (j = x-lb+ 1)/(4Jl+ l’h(x,rl) 

(104 

and 

9 = x-(“+ 1)/(4n+ uy 
(lob) 

The temperature of the wall is assumed to depend 
upon x in the following manner : 

Tw(x) = T ,  +Gr-h Trx-(al+ I)/(4n+ 1). 
(11) 

Insertion of equation (10) into equations (3)-(5) leads 
to 

(If”,“- If”)‘+ ZsffL L-f<’ 

, 
+h=x f$y$ 

( > 
(12) 

a = n/(4n+ I). h = (6n-%I-2)/[(4n+ IN?-2)] 
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subjected to the boundary conditions 

f(x, 0) = ./‘(s, 0) = 0 

h(s,O) = I or h’(.u,O) = 0 (144 

f’ (x, us) = h(s, a) = 0 (lab) 

where primes denote partial differentiation with 
respect to ‘1. 

It is apparent that these equations will permit simi- 
larity solutions if the exponent of x in equation (I 3) 
vanishes, i.e. 

s=n-I. (15) 

Under this restrictional condition, equations (I 2) 
and (I 3) become 

(j-h)’ = 0 (17) 

with the boundary conditions of 

(16) 

f(0) = f’(0) = 0, h(0) = I, /r’(O) = 0 (IW 

f’(m) = h(m) = 0. (18b) 

The heat flux condition (7) may now be written as 

I= 
s 

‘zI j’h dq = ,(n, Pr). (19) 
0 

We notice to this end that for n = I, equations (I 6) 
and (17) reduce to those of refs. [3, 41 which describe 
the classical problem of convective wall plume in a 
Newtonian fluid. 

It is customary to present the flow characteristics 
by means of the skin friction coefficient 

Cf ‘2s. 

Making use of equations (I), (9) and (IO) the skin 
friction coefficient (20) becomes 

Cr G,A/‘“+ 1) ,yn/(4~l+ 1) = 2lf”(o)l”. (21) 

In conclusion, the problem to be solved is that pre- 
sented by equations (I 6)-( 19) and (21). 

3. RESULTS AND DISCUSSION 

Equations (16) and (l7), which are subject to the 
boundary conditions (l8), have been integrated 
numerically by using the Runge-Kutta-Gill method 
for n ranging from 0.2 to 2.0 and for Pr = IO and 100, 
respectively. As mentioned in Section 2, in this model 

Table 2. Numerical values of computed parameters for 
various n and Pr = IO 

I7 f”(0) I - J,,, J(m) CAlax) ‘lo %I 

0.2 3.21309 14.67177 0.70945 3.46476 1.8000 3.25674 
0.4 1.56230 9.05100 0.56938 2.48399 1.6500 2.15474 
0.6 1.08804 5.18968 0.45349 1.52345 1.3000 1.49193 
0.8 0.95063 3.96055 0.43117 1.32087 1.2000 1.24216 
I.0 0.86123 3.00209 0.39276 0.99482 1.0000 1.04663 
1.2 0.90450 2.87300 0.49054 1.62756 1.4000 0.92290 
I .5 0.82903 2.12471 0.40676 0.70861 0.9000 0.82179 
2.0 0.76044 1.27685 0.30440 0.32992 0.6000 0.64404 

tz is the property of a fluid with n = I for a Newtonian 
fluid. Non-Newtonian fluids with n < I are called 
pseudo-plastic (most macromolecular fluids are of this 
kind with 0.2 < n < 0.6, see Bird et al. [ 171) and those 
with n > I dilatant. 

The results for various transport parameters, which 
are important for representing the heat transfer cor- 
relations, see Gebhart ef al. [l8], are given in Tables 
2 and 3 for the flow behaviour index ranging from 0.2 
to 2.0 and Prandtl numbers of IO and 100, respec- 
tively. In order to assess the accuracy of our numerical 
results, the present results were compared with those 
of ref. [4] for n = I (Newtonian fluids). Thus, the 
values for CrGr”S.~“5 from equation (21) when n = I 
are 2.62012 for Pr = 0.72 and 1.85964 for Pr = 6.7 
while the corresponding values from ref. [4] are 2.6201 
and 1.8596, respectively. This shows that the agree- 
ment is excellent. Also, comparison with the results 
of Liburdy and Faeth [I91 for n = I with Pr = IO and 
100 is found to be very good. 

It is noted that from the present results that the 
friction factor decreases with increasing values of n 
and Pr. This fact is also verified from the results pre- 
sented in Fig. I. The integral I defined in equation 
(19) determines the velocity level and the surface tem- 
perature. From Table 3 we observe that I decreases 
with increasing values of Pr and n. Note that having 
determined the values of I, the reference temperature 
T, can be obtained easily through equation (8). 

Figures 2 and 3 display results for the upward vel- 
ocity profiles in the wall plume. It is observed that the 
maximum velocity decreases with increasing values 
of the flow behaviour index, n. The location of the 
maximum velocity moves closer to the wall as n 

Table 3. Numerical values of computed parameters for 
various n and Pr = 100 

n f”(O) I /‘,., J-(m) rlUb.J vo.50 

0.2 1.23283 3.33278 0.22884 0.90717 1.5000 2.19335 
0.4 0.73858 2.33788 0.20504 0.73486 1.3000 0.87350 
0.6 0.50828 1.04260 0.13315 0.19407 0.8000 1.02645 
0.8 0.41895 0.53576 0.09548 0.08289 0.5400 0.76715 
1.0 0.48062 0.52386 0.12145 0.12585 0.6000 0.59084 
1.2 0.54364 0.48404 0.16156 0.19320 0.8000 0.49105 
1.5 0.53094 0.31474 0.13440 0.12537 0.5000 0.41985 

2.0 0.44790 0.10934 0.06097 0.01668 0.2100 0.25987 
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FIG. I. Friction factor vs Row behaviour index, n, for Pr = 10 
and 100. 

increases. The boundary region thickness decreases 
as n increases. As the Prandtl number increases, the 
thinning effect on the thermal layer influences the 
boundary region. Also, it is remarkable that the curve 
for n = 1 (Newtonian fluids) appears to intersect more 
curves for Pr = 100 than for Pr = 10. The reason for 
this seems to be the dependence of the Prandtl number 
on the flow behaviour index, n, reference velocity, 0; 
and the reference length, L, of the vertical surface. The 
results from Figs. 4 and 5 describe the temperature 
distribution in the wall plume. It is observed that as 
Pr or n increases, the thermal layer becomes thinner. 
The important considerations in this flow are the vel- 
ocity level, the surface temperature and the extent of 

Pr= 10 

2.0 6.0 10.0 

9 

FIG. 2. Upward velocity profile vs similarity variable, q, for FIG. 4. Temperature distribution in the wall plume vs simi- 
Pr = 10. larity variable, 9, for Pr = 10. 
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FIG. 3. Upward velocity profile vs similarity variable, q, for 
Pr = 100. 

the boundary region. As the flow proceeds down- 
stream from a heated element located on an unheated 
vertical surface, it influences the cooling charac- 
teristics of any other elements it may encounter. An 
element downstream is immersed in a flowing heated 
fluid, whose temperature and velocity are determined 
by the distance between the two elements and the heat 
flux input I. Tables 2 and 3 show the necessary values 
off”(O), 1, f  k,i,J(co) and q(j&), over the Pr and 
n ranges considered, to allow evaluation of the tem- 
perature and velocity fields at a downstream element. 

The flow induced by buoyancy due to a horizontal 

1.2 

t 

Pr= 10 

0.6 

0.0 2.0 6.0 10.0 
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FIG. 5. Temperature distribution in the wall plume vs simi- 
larity variable, q. for Pr = 100. 

line source embedded at the leading edge of a vertical 
plate in a power-law fluid is an interesting practical 
problem. It is hoped that the present work will elicit 
some experiments for quick and yet accurate esti- 
mations of convective heat transfer rates. 

4. CONCLUDING REMARKS 

In this paper, we have analysed the laminar natural 
convection flow generated by a line thermal source 
imbedded in an adiabatic vertical surface. The flow 
configuration is of much interest since the governing 
boundary layer equations admit similarity solutions 
which are more revealing than the direct numerical 
integration of the partial differential equations. In 
addition, this problem is of considerable importance 
in engineering applications, such as the positioning 
of components dissipating energy on vertical circuit 
boards, and the results concerning the boundary layer 
flow characteristics are reported here. The numerical 
results presented in this paper allow evaluation of the 
velocity and temperature fields in the generated flow. 
The flow behaviour index was varied from 0.2 to 2.0 
whereas the Prandtl number was taken as 10 and 100. 
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